Exercise 1.42

Given two vectors $\overrightarrow{\boldsymbol{A}}=4.00 \hat{\boldsymbol{i}}+7.00 \hat{\boldsymbol{j}}$ and $\overrightarrow{\boldsymbol{B}}=5.00 \hat{\boldsymbol{i}}-2.00 \hat{\boldsymbol{j}}$, (a) find the magnitude of each vector; (b) write an expression for the vector difference $\overrightarrow{\boldsymbol{A}}-\overrightarrow{\boldsymbol{B}}$ using unit vectors; and (c) find the magnitude and direction of the vector difference $\overrightarrow{\boldsymbol{A}}-\overrightarrow{\boldsymbol{B}}$. (d) In a vector diagram show $\overrightarrow{\boldsymbol{A}}, \overrightarrow{\boldsymbol{B}}$, and $\overrightarrow{\boldsymbol{A}}-\overrightarrow{\boldsymbol{B}}$, and also show that your diagram agrees qualitatively with your answer in part (c).

Solution

The magnitudes of $\overrightarrow{\boldsymbol{A}}$ and $\overrightarrow{\boldsymbol{B}}$ are

$$
\begin{aligned}
& |\overrightarrow{\boldsymbol{A}}|=\sqrt{(4.00)^{2}+(7.00)^{2}} \approx 8.06 \\
& |\overrightarrow{\boldsymbol{B}}|=\sqrt{(5.00)^{2}+(-2.00)^{2}} \approx 5.39 .
\end{aligned}
$$

The vector difference is

$$
\begin{aligned}
\overrightarrow{\boldsymbol{A}}-\overrightarrow{\boldsymbol{B}} & =(4.00 \hat{\boldsymbol{i}}+7.00 \hat{\boldsymbol{j}})-(5.00 \hat{\boldsymbol{i}}-2.00 \hat{\boldsymbol{j}}) \\
& =(4.00-5.00) \hat{\boldsymbol{i}}+(7.00+2.00) \hat{\boldsymbol{j}} \\
& =-1.00 \hat{\boldsymbol{i}}+9.00 \hat{\boldsymbol{j}},
\end{aligned}
$$

and its magnitude and direction measured counterclockwise from the positive x-axis are

$$
\begin{aligned}
|\overrightarrow{\boldsymbol{A}}-\overrightarrow{\boldsymbol{B}}| & =\sqrt{(-1.00)^{2}+(9.00)^{2}} \approx 9.06 \\
\theta & =\tan ^{-1}\left(\frac{9.00}{-1.00}\right) \\
& =\pi-\tan ^{-1}\left(\frac{9.00}{1.00}\right) \\
& \approx 96.3^{\circ} .
\end{aligned}
$$

